Host SAMHD1 protein promotes HIV-1 recombination in macrophages.

نویسندگان

  • Laura A Nguyen
  • Dong-Hyun Kim
  • Michele B Daly
  • Kevin C Allan
  • Baek Kim
چکیده

Template switching can occur during the reverse transcription of HIV-1. Deoxynucleotide triphosphate (dNTP) concentrations have been biochemically shown to impact HIV-1 reverse transcriptase (RT)-mediated strand transfer. Lowering the dNTP concentrations promotes RT pausing and RNA template degradation by RNase H activity of the RT, subsequently leading to strand transfer. Terminally differentiated/nondividing macrophages, which serve as a key HIV-1 reservoir, contain extremely low dNTP concentrations (20-50 nm), which results from the cellular dNTP hydrolyzing sterile α motif and histidine aspartic domain containing protein 1 (SAMHD1) protein, when compared with activated CD4(+) T cells (2-5 μm). In this study, we first observed that HIV-1 template switching efficiency was nearly doubled in human primary macrophages when compared with activated CD4(+) T cells. Second, SAMHD1 degradation by viral protein X (Vpx), which elevates cellular dNTP concentrations, decreased HIV-1 template switching efficiency in macrophages to the levels comparable with CD4(+) T cells. Third, differentiated SAMHD1 shRNA THP-1 cells have a 2-fold increase in HIV-1 template switching efficiency. Fourth, SAMHD1 degradation by Vpx did not alter HIV-1 template switching efficiency in activated CD4(+) T cells. Finally, the HIV-1 V148I RT mutant that is defective in dNTP binding and has DNA synthesis delay promoted RT stand transfer when compared with wild type RT, particularly at low dNTP concentrations. Here, we report that SAMHD1 regulation of the dNTP concentrations influences HIV-1 template switching efficiency, particularly in macrophages.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A G1‐like state allows HIV‐1 to bypass SAMHD1 restriction in macrophages

An unresolved question is how HIV-1 achieves efficient replication in terminally differentiated macrophages despite the restriction factor SAMHD1. We reveal inducible changes in expression of cell cycle-associated proteins including MCM2 and cyclins A, E, D1/D3 in macrophages, without evidence for DNA synthesis or mitosis. These changes are induced by activation of the Raf/MEK/ERK kinase cascad...

متن کامل

Moderate Restriction of Macrophage-Tropic Human Immunodeficiency Virus Type 1 by SAMHD1 in Monocyte-Derived Macrophages

Macrophage-tropic human immunodeficiency virus type 1 (HIV-1) strains are able to grow to high titers in human monocyte-derived macrophages. However, it was recently reported that cellular protein SAMHD1 restricts HIV-1 replication in human cells of the myeloid lineage, including monocyte-derived macrophages. Here we show that degradation of SAMHD1 in monocyte-derived macrophages was associated...

متن کامل

SAMHD1 Promotes DNA End Resection to Facilitate DNA Repair by Homologous Recombination.

DNA double-strand break (DSB) repair by homologous recombination (HR) is initiated by CtIP/MRN-mediated DNA end resection to maintain genome integrity. SAMHD1 is a dNTP triphosphohydrolase, which restricts HIV-1 infection, and mutations are associated with Aicardi-Goutières syndrome and cancer. We show that SAMHD1 has a dNTPase-independent function in promoting DNA end resection to facilitate D...

متن کامل

The Dynamic Interplay between HIV-1, SAMHD1, and the Innate Antiviral Response

The innate immune response constitutes the first cellular line of defense against initial HIV-1 infection. Immune cells sense invading virus and trigger signaling cascades that induce antiviral defenses to control or eliminate infection. Professional antigen-presenting cells located in mucosal tissues, including dendritic cells and macrophages, are critical for recognizing HIV-1 at the site of ...

متن کامل

SAMHD1-Dependent and -Independent Functions of HIV-2/SIV Vpx Protein

Both human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) encode a unique set of accessory proteins that enhance viral replication in the host. Two similar accessory proteins, Vpx and Vpr, are encoded by HIV-2. In contrast, HIV-1 encodes Vpr but not Vpx. Recent studies have indicated that Vpx counteracts a particular host restriction factor, thereby facilitating reverse tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 289 5  شماره 

صفحات  -

تاریخ انتشار 2014